Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(2): 289-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623160

RESUMO

An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.

2.
Int J Biol Macromol ; 265(Pt 1): 130798, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479674

RESUMO

Controlling ethylene production and microbial infection are key factors to prolong the shelf life of climacteric fruit. Herein, a nanocomposite film, hexanal-loaded ZIF-8/CS (HZCF) with "nano-barrier" structure, was developed by a one-pot co-crystallized of ZIF-8 in situ growth on quaternized chitosan (CS) and encapsulation of hexanal into ZIF-8 via microporous adsorption. The resultant film realized the temperature responsive release of hexanal via the steric hindrance and hierarchical pore structure as "nano-barrier", which can inhibit ethylene production in climacteric fruit on demand. Based on this, the maximum ethylene inhibition rate of HZCF was up to 52.6 %. Meanwhile, the film exhibits excellent antibacterial, mechanical, UV resistance and water retention properties, by virtue of the functional synergy between ZIF-8 and CS. Contributed to the multifunctional features, HZCF prolonged the shelf life of banana and mango for at least 16 days, which is 8 days longer than that of control fruit. More strikingly, HZCF is washable and biodegradable, which is expected to replace non-degradable plastic film. Thus, this study provides a convenient novel approach to simplify the encapsulation of active molecule on metal-organic frameworks (MOFs), develops a packaging material for high-efficient freshness preservation, and helps to alleviate the survival crisis caused by food waste.


Assuntos
Aldeídos , Quitosana , Climatério , Eliminação de Resíduos , Quitosana/farmacologia , Quitosana/química , Frutas , Temperatura , Etilenos/química , Antibacterianos/farmacologia , Embalagem de Alimentos
3.
Trends Plant Sci ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38402015

RESUMO

Fruit quality is essential for nutrition and human health and needs urgent attention in current agricultural practices. Organic farming is not as productive as conventional agriculture, but it can provide higher quality in some fruit crops, thanks to the absence of synthetic fertilizers and pesticides, enhanced pollination, and the reduction of protection treatments, hence boosting antioxidant compound production. Although organic farming does not always provide healthier food than conventional farming, some lessons from organic farming can be extrapolated to new sustainable production models. Exploiting natural resources and an adequate knowledge transfer will undoubtedly help improve the quality of climacteric and nonclimacteric fruits in new agricultural systems.

5.
Genes (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002972

RESUMO

The guava (Psidium guajava L.) is a climacteric fruit with an accelerated post-harvest overripening. miRNAs are small RNA sequences that function as gene regulators in eukaryotes and are essential for their survival and development. In this study, miRNA libraries were constructed, sequenced and analyzed from the breaker and ripe stages of guava fruit cv. Siglo XXI. One hundred and seventy-four mature miRNA sequences from 28 miRNA families were identified. The taxonomic distribution of the guava miRNAs showed a high level of conservation among the dicotyledonous plants. Most of the predicted miRNA target genes were transcription factors and genes involved in the metabolism of phytohormones such as abscisic acid, auxins, and ethylene, as revealed through an ontology enrichment analysis. The miRNA families miR168, miR169, miR396, miR397, and miR482 were classified as being directly associated with maturation, whereas the miRNA families miR160, miR165, miR167, miR3930, miR395, miR398, and miR535 were classified as being indirectly associated. With this study, we intended to increase our knowledge and understanding of the regulatory process involved in the ripening process, thereby providing valuable information for future research on the ripening of guava fruit.


Assuntos
MicroRNAs , Psidium , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Psidium/genética , Psidium/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
6.
Foods ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372629

RESUMO

This study introduces an effective solution to enhance the postharvest preservation of broccoli, a vegetable highly sensitive to ethylene, a hormone produced by climacteric fruits such as tomatoes. The proposed method involves a triple combination of ethylene elimination techniques: potassium permanganate (KMnO4) filters combined with ultraviolet radiation (UV-C) and titanium oxide (TiO2), along with a continuous airflow to facilitate contact between ethylene and these oxidizing agents. The effectiveness of this approach was evaluated using various analytical techniques, including measurements of weight, soluble solids content, total acidity, maturity index, color, chlorophyll, total phenolic compounds, and sensory analysis conducted by experts. The results demonstrated a significant improvement in the physicochemical quality of postharvest broccoli when treated with the complete system. Notably, broccoli subjected to this innovative method exhibited enhanced organoleptic quality, with heightened flavors and aromas associated with fresh green produce. The implementation of this novel technique holds great potential for the food industry as it reduces postharvest losses, extends the shelf life of broccoli, and ultimately enhances product quality while minimizing waste. The successful development and implementation of this new technique can significantly improve the sustainability of the food industry while ensuring the provision of high-quality food to consumers.

7.
Plant J ; 115(3): 724-741, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37095638

RESUMO

Carotenoids are major accessory pigments in the chloroplast, and they also act as phytohormones and volatile compound precursors to influence plant development and confer characteristic colours, affecting both the aesthetic and nutritional value of fruits. Carotenoid pigmentation in ripening fruits is highly dependent on developmental trajectories. Transcription factors incorporate developmental and phytohormone signalling to regulate the biosynthesis process. By contrast to the well-established pathways regulating ripening-related carotenoid biosynthesis in climacteric fruit, carotenoid regulation in non-climacteric fruit is poorly understood. Capsanthin is the primary carotenoid of non-climacteric pepper (Capsicum) fruit; its biosynthesis is tightly associated with fruit ripening, and it confers red pigmentation to the ripening fruit. In the present study, using a coexpression analysis, we identified an R-R-type MYB transcription factor, DIVARICATA1, and demonstrated its role in capsanthin biosynthesis. DIVARICATA1 encodes a nucleus-localised protein that functions primarily as a transcriptional activator. Functional analyses showed that DIVARICATA1 positively regulates carotenoid biosynthetic gene (CBG) transcript levels and capsanthin levels by directly binding to and activating CBG promoter transcription. Furthermore, an association analysis revealed a significant positive association between DIVARICATA1 transcription level and capsanthin content. ABA promotes capsanthin biosynthesis in a DIVARICATA1-dependent manner. Comparative transcriptomic analysis of DIVARICATA1 in Solanaceae plants showed that its function likely differs among species. Moreover, the pepper DIVARICATA1 gene could be regulated by the ripening regulator MADS-RIN. The present study illustrates the transcriptional regulation of capsanthin biosynthesis and offers a target for breeding peppers with high red colour intensity.


Assuntos
Capsicum , Fatores de Transcrição/metabolismo , Carotenoides/metabolismo , Pigmentos Biológicos/metabolismo , Capsicum/genética , Capsicum/metabolismo , Cor , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Transativadores/genética , Filogenia
8.
Front Plant Sci ; 13: 949383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061784

RESUMO

In commercial fruit production, synchronized ripening and stable shelf life are important properties. The loosely clustered or non-bunching muscadine grape has unrealized potential as a disease-resistant cash crop, but requires repeated hand harvesting due to its unsynchronized or long or heterogeneous maturation period. Genomic research can be used to identify the developmental and environmental factors that control fruit ripening and postharvest quality. This study coupled the morphological, biochemical, and genetic variations between "Carlos" and "Noble" muscadine grape cultivars with RNA-sequencing analysis during berry maturation. The levels of antioxidants, anthocyanins, and titratable acids varied between the two cultivars during the ripening process. We also identified new genes, pathways, and regulatory networks that modulated berry ripening in muscadine grape. These findings may help develop a large-scale database of the genetic factors of muscadine grape ripening and postharvest profiles and allow the discovery of the factors underlying the ripeness heterogeneity at harvest. These genetic resources may allow us to combine applied and basic research methods in breeding to improve table and wine grape ripening uniformity, quality, stress tolerance, and postharvest handling and storage.

9.
Cells ; 11(14)2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35883658

RESUMO

The appearance of pomegranate (Punica granatum L.) fruit is highly important for its marketing. The primary concerns are obtaining sufficient red pigment accumulation and minimal cracking of the fruit skin (the outer red layer of the peel). We analyzed the skin transcriptome of pomegranate cv. Wonderful at distinct time points of fruit development to characterize the processes that occur in the skin during fruit ripening and which may reflect on processes in the whole fruit, such as the non-climacteric nature of pomegranate. The data suggested a ripening mechanism in pomegranate skin that differs from that in strawberry-the model plant for non-climacteric fruit where abscisic acid is the growth regulator that drives ripening-involving ethylene, polyamine, and jasmonic acid pathways. The biosynthetic pathways of important metabolites in pomegranate-hydrolyzable tannins and anthocyanins-were co-upregulated at the ripening stage, in line with the visual enhancement of red coloration. Interestingly, cuticle- and cell-wall-related genes that showed differential expression between the developmental stages were mainly upregulated in the skin of early fruit, with lower expression at mid-growth and ripening stages. Nevertheless, lignification may be involved in skin hardening in the mature fruit.


Assuntos
Lythraceae , Punica granatum , Antocianinas/metabolismo , Frutas , Lythraceae/genética , Lythraceae/metabolismo , Transcriptoma/genética
10.
Front Plant Sci ; 13: 923484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755638

RESUMO

Fleshy fruits have been traditionally categorized into climacteric (CL) and non-climacteric (NC) groups. CL fruits share a common ripening mechanism of hormonal regulation, i.e., the ethylene regulation, whereas whether NC fruits share a common mechanism remains controversial. Abscisic acid (ABA) has been commonly thought to be a key regulator in NC fruit ripening; however, besides ABA, many other hormones have been increasingly suggested to play crucial roles in NC fruit ripening. NC fruits vary greatly in their organ origin, constitution, and structure. Development of different organs may be different in the pattern of hormonal regulation. It has been well demonstrated that the growth and development of strawberry, the model of NC fruits, is largely controlled by a hormonal communication between the achenes and receptacle; however, not all NC fruits contain achenes. Accordingly, it is particularly important to understand whether strawberry is indeed able to represent a universal mechanism for the hormonal regulation of NC fruit ripening. In this mini-review, we summarized the recent research advance on the hormone regulation of NC ripening in relation to fruit organ origination, constitution, and structure, whereby analyzing and discussing whether NC fruits may share a common mechanism of hormonal regulation.

11.
J Integr Plant Biol ; 64(7): 1448-1461, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35568969

RESUMO

The NAC transcription factor NONRIPENING (NOR) is a master regulator of climacteric fruit ripening. Melon (Cucumis melo L.) has climacteric and non-climacteric fruit ripening varieties and is an ideal model to study fruit ripening. Two natural CmNAC-NOR variants, the climacteric haplotype CmNAC-NORS,N and the non-climacteric haplotype CmNAC-NORA,S , have effects on fruit ripening; however, their regulatory mechanisms have not been elucidated. Here, we report that a natural mutation in the transcriptional activation domain of CmNAC-NORS,N contributes to climacteric melon fruit ripening. CmNAC-NOR knockout in the climacteric-type melon cultivar "BYJH" completely inhibited fruit ripening, while ripening was delayed by 5-8 d in heterozygous cmnac-nor mutant fruits. CmNAC-NOR directly activated carotenoid, ethylene, and abscisic acid biosynthetic genes to promote fruit coloration and ripening. Furthermore, CmNAC-NOR mediated the transcription of the "CmNAC-NOR-CmNAC73-CmCWINV2" module to enhance flesh sweetness. The transcriptional activation activity of the climacteric haplotype CmNAC-NORS,N on these target genes was significantly higher than that of the non-climacteric haplotype CmNAC-NORA,S . Moreover, CmNAC-NORS,N complementation fully rescued the non-ripening phenotype of the tomato (Solanum lycopersicum) cr-nor mutant, while CmNAC-NORA,S did not. Our results provide insight into the molecular mechanism of climacteric and non-climacteric fruit ripening in melon.


Assuntos
Cucumis melo , Cucurbitaceae , Solanum lycopersicum , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Exp Bot ; 73(12): 4022-4033, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35394503

RESUMO

Melon (Cucumis melo) has emerged as an alternative model to tomato for studying fruit ripening due to the coexistence of climacteric and non-climacteric varieties. Previous characterization of a major quantitative trait locus (QTL), ETHQV8.1, that is able to trigger climacteric ripening in a non-climacteric background resulted in the identification of a negative regulator of ripening CTR1-like (MELO3C024518) and a putative DNA demethylase ROS1 (MELO3C024516) that is the orthologue of DML2, a DNA demethylase that regulates fruit ripening in tomato. To understand the role of these genes in climacteric ripening, in this study we generated homozygous CRISPR knockout mutants of CTR1-like and ROS1 in a climacteric genetic background. The climacteric behavior was altered in both loss-of-function mutants in two growing seasons with an earlier ethylene production profile being observed compared to the climacteric wild type, suggesting a role of both genes in climacteric ripening in melon. Single-cytosine methylome analyses of the ROS1-knockout mutant revealed changes in DNA methylation in the promoter regions of the key ripening genes such as ACS1, ETR1, and ACO1, and in transcription factors associated with ripening including NAC-NOR, RIN, and CNR, suggesting the importance of ROS1-mediated DNA demethylation for triggering fruit ripening in melon.


Assuntos
Cucurbitaceae , Solanum lycopersicum , Sistemas CRISPR-Cas , Cucurbitaceae/genética , Epigênese Genética , Etilenos , Frutas/genética , Edição de Genes , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
13.
São Paulo; s.n; s.n; 2022. 106 p. tab, graf.
Tese em Inglês | LILACS | ID: biblio-1380458

RESUMO

Fruit ripening is a biochemical process that results in flavor, odor, texture, and color suitable for human consumption, in addition to providing access to important nutrients. Although ripening promotes sensory and nutritional increases in fruits, there is also an increased susceptibility to physical damage, as is the case with papaya. These transformations occur due to changes in gene expression patterns at different stages of maturity, whose control and coordination result from the combined action of plant hormones, especially ethylene. As the action of this hormone in the regulation of gene expression is still elusive, this dissertation sought to address the global analysis of the transcriptome in an overview study of molecular processes involved in the ripening of ethylene-treated and non-treated papaya. Transcription factors related to ethylene synthesis and signaling had increased activity towards exogenous-ethylene treatment. Consequently, ethylene-induced enzymes had their coding genes differentially expressed, like genes related to the synthesis of carotenoids, linalool, and vitamins, which increase color, aroma, and antioxidant activity, respectively. Metabolic pathways related to the synthesis of sugars were suppressed while genes encoding the enzyme responsible for sucrose synthesis maintained a basal expression, showing that the accumulation of sugars occurs before the ripening process. The firmness of the peel and pulp of the fruits were strongly influenced by the treatment with ethylene and by the time of the experiment, suffering the action of numerous enzymes related to the degradation of the cell wall. The main enzyme responsible for softening the pulp was polygalacturonase, together with the activity of other pectinases and cellulases. In contrast to the need for the pre-climacteric action of pectate lyase and pectinesterase reported in other fleshy fruits, such as tomatoes and strawberries, papaya did not show a significant difference in their expression. The meta-analysis of several papaya ripening transcriptomes confirmed the expression profile observed in the previous RNA-seq, besides providing statistical enrichment to the biological narratives. Finally, the present study gathered a range of robust information on the gene regulation of the papaya ripening process, which opens possibilities for future approaches to transcriptomic analysis and validates the use of papaya as a model for such studies


O amadurecimento de frutos é um processo bioquímico que resulta em sabor, odor, textura e cor adequados para o consumo humano, além de propiciar o acesso a nutrientes importantes. Apesar do amadurecimento promover incrementos sensoriais e nutricionais nos frutos, ocorre também um aumento da suscetibilidade a danos físicos, como é o caso do mamão. Essas transformações ocorrem devido às alterações nos padrões de expressão gênica nos diferentes estádios de amadurecimento, cujo controle e coordenação decorrem da ação combinada de hormônios vegetais, principalmente do etileno. Como a ação deste hormônio na regulação da expressão gênica ainda é elusiva, a presente dissertação buscou abordar a análise global do transcriptoma em um amplo estudo dos processos moleculares envolvidos no amadurecimento de mamões tratados e não tratados com etileno. Os fatores de transcrição relacionados com a síntese e a sinalização do etileno tiveram sua atividade aumentada perante o tratamento exógeno com etileno. Consequentemente, as enzimas reguladas por esse hormônio tiveram seus genes de codificação expressos diferencialmente, como foi o caso de genes relacionados à síntese de carotenoides, linalool e vitaminas, que atuam no aumento da cor, aroma e atividade antioxidante, respectivamente. Vias metabólicas relacionadas com à síntese de açúcares foram reprimidas enquanto genes codificantes da enzima responsável pela síntese de sacarose mantiveram uma expressão basal, evidenciando que o acúmulo de açúcares ocorre antes do processo de amadurecimento. A firmeza da casca e da polpa dos frutos foram fortemente influenciadas pelo tratamento com etileno e pelo tempo de experimento, sofrendo ação de inúmeras enzimas relacionadas com a degradação da parede celular. A principal enzima responsável pelo amolecimento da polpa foi a poligalacturonase, em conjunto com a atividade de outras pectinases e celulases. Em contraste com a necessidade da ação pré-climatérica da pectato liase e da pectinesterase relatada em outras frutas carnosas, como tomates e morangos, o mamão não apresentou uma diferença significativa na expressão das mesmas. A meta-análise de diversos transcriptomas do amadurecimento do mamão reafirmaram o perfil de expressão observado no RNA-seq, além de prover enriquecimento estatístico às narrativas biológicas. Por fim, o presente estudo reuniu uma gama de informações robustas sobre a regulação gênica do processo de amadurecimento do mamão papaia, o que abrange a possibilidade para futuras abordagens de análise transcriptomica e valida o uso do mamão como modelo para tais estudos


Assuntos
Carica/anatomia & histologia , Biologia de Sistemas/instrumentação , Etilenos/efeitos adversos , Sacarose , Climatério , Expressão Gênica , Solanum lycopersicum , Transcriptoma/genética , Frutas , Antioxidantes/análise
14.
Front Plant Sci ; 12: 765897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956263

RESUMO

As the auxin-ethylene interaction in climacteric fruit ripening has been highlighted, the hormonal regulation of aroma changes in climacteric fruits requires clarification. The influence of both phytohormones on the volatile organic compound (VOC) metabolism was evaluated during tomato (Solanum lycopersicum L.) fruit ripening. Tomato fruits cv. Micro-Tom and Sweet Grape at the mature green stage were randomly grouped according to treatment with ethylene (ETHY), auxin (IAA), or both (ETHY + IAA). At middle ripening, Micro-Tom ETHY + IAA fruits present VOC profiles similar to those of ETHY fruits, while Sweet Grape presents VOC profiles closer to those of IAA fruits. At full ripeness, Micro-Tom and Sweet Grape ETHY + IAA fruits show profiles closer to those of IAA fruits, suggesting that the auxin overlaps the ethylene effects. Aroma compounds positively correlated with consumer preferences (2-isobutylthiazole, 6-methyl-5-hepten-2-one, and others) are identified in both cultivars and have their contents affected by both hormone treatments. The transcription of genes related to the biosynthesis of important tomato VOCs that have fatty-acid and carotenoid precursors evidences their regulation by both plant hormones. Additionally, the results indicate that the observed effects on the VOC metabolism are not restricted to the Micro-Tom cultivar, as these are also observed in the Sweet Grape cultivar. In conclusion, ethylene and auxin directly regulate the metabolic pathways related to VOC formation, impacting tomato aroma formation during ripening since Micro-Tom fruits apparently at the same maturation stage have different aromas.

15.
Plant Mol Biol ; 107(6): 477-497, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34633626

RESUMO

KEY MESSAGE: This review contains the regulatory mechanisms of plant hormones in the ripening process of climacteric and non-climacteric fruits, interactions between plant hormones and future research directions. The fruit ripening process involves physiological and biochemical changes such as pigment accumulation, softening, aroma and flavor formation. There is a great difference in the ripening process between climacteric fruits and non-climacteric fruits. The ripening of these two types of fruits is affected by endogenous signals and exogenous environments. Endogenous signaling plant hormones play an important regulatory role in fruit ripening. This paper systematically reviews recent progress in the regulation of plant hormones in fruit ripening, including ethylene, abscisic acid, auxin, jasmonic acid (JA), gibberellin, brassinosteroid (BR), salicylic acid (SA) and melatonin. The role of plant hormones in both climacteric and non-climacteric fruits is discussed, with emphasis on the interaction between ethylene and other adjustment factors. Specifically, the research progress and future research directions of JA, SA and BR in fruit ripening are discussed, and the regulatory network between JA and other signaling molecules remains to be further revealed. This study is meant to expand the understanding of the importance of plant hormones, clarify the hormonal regulation network and provide a basis for targeted manipulation of fruit ripening.


Assuntos
Frutas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
16.
Cells ; 10(9)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34571988

RESUMO

Papaya is a fleshy fruit that undergoes fast ethylene-induced modifications. The fruit becomes edible, but the fast pulp softening is the main factor that limits the post-harvest period. Papaya fast pulp softening occurs due to cell wall disassembling coordinated by ethylene triggering that massively expresses pectinases. In this work, RNA-seq analysis of ethylene-treated and non-treated papayas enabled a wide transcriptome overview that indicated the role of ethylene during ripening at the gene expression level. Several families of transcription factors (AP2/ERF, NAC, and MADS-box) were differentially expressed. ACO, ACS, and SAM-Mtase genes were upregulated, indicating a high rate of ethylene biosynthesis after ethylene treatment. The correlation among gene expression and physiological data demonstrated ethylene treatment can indeed simulate ripening, and regulation of changes in fruit color, aroma, and flavor could be attributed to the coordinated expression of several related genes. Especially about pulp firmness, the identification of 157 expressed genes related to cell wall metabolism demonstrated that pulp softening is accomplished by a coordinated action of several different cell wall-related enzymes. The mechanism is different from other commercially important fruits, such as strawberry, tomato, kiwifruit, and apple. The observed behavior of this new transcriptomic data confirms ethylene triggering is the main event that elicits fast pulp softening in papayas.


Assuntos
Carica/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Carica/enzimologia , Carica/genética , Parede Celular/metabolismo , Etilenos/farmacologia , Frutas/efeitos dos fármacos , Frutas/enzimologia , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Proteínas de Plantas/metabolismo , Biologia de Sistemas/métodos , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
17.
Int J Biol Macromol ; 183: 1911-1924, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34097955

RESUMO

Hydrogels have great potential in food packaging. However, stimuli-responsive preservative delivery-based hydrogels for emerging active packaging have not yet been explored. Herein, Unprecedented pH/temperature-responsive hydrogel films for emerging active climacteric fruit packaging were developed based on TEMPO-oxidized nanofibrillated cellulose (TOCNFs) from wheat straw with food-grade cationic-modified poly(N-isopropyl acrylamide-co-acrylamide) (CPNIPAM-AM). TOCNF incorporation into CPNIPAM-AM revealed desirable enhancement of characterization, antimicrobial properties, and pH/thermal-responsive behaviour. In-vitro delivery and release mechanism studies with natamycin revealed the fastest release rates in preferred low pH media, up to 32.1 times higher than that under neutral conditions via anomalous diffusion. Applying a thermal stimulus increased natamycin release rates, providing 1.5-21% gradual-additional pulses by Fickian diffusion. The final hydrogel film showed efficient decay control in response to stimuli of the climacteric fruit environment with safe, recyclable, and feasible application demonstrating the significant potential to be used as an alternative-sustainable material for stimuli-triggered preservative delivery in climacteric fruit packaging.


Assuntos
Anti-Infecciosos/química , Antioxidantes/química , Óxidos N-Cíclicos/química , Metilgalactosídeos/química , Embalagem de Alimentos , Temperatura Alta , Concentração de Íons de Hidrogênio , Nanofibras , Triticum/química
18.
Int J Food Sci Technol ; 56(3): 1171-1183, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33776228

RESUMO

The physicochemical and physiological attributes of three contrasting commercial varieties of Musaceae, Dominico Harton (plantain), Guineo (cooking banana) and Gros Michel (dessert banana), were evaluated and statistically analysed during post-harvest ripening. Quality attributes differed markedly among varieties, both in fresh fruits and during ripening. Variety (V) had a significant effect (P < 0.001) on all attributes except total soluble solids (TSS), carotenes and total chlorophyll. Storage time (ST) had a significant effect on all attributes except colour parameter b* and total carotenes. Starch levels decreased significantly (P < 0.001) during ripening, with nearly complete hydrolysis in Gros Michel, followed by Guineo and Dominico Harton. Discriminant analysis showed that central diameter, TSS of the pulp, colour parameter a* and total starch had the highest weight in the differentiation among varieties. These results point out which parameters may help improve current methods for monitoring ripening of bananas, in particular the commercially important varieties in this study.

19.
Front Plant Sci ; 12: 621587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597962

RESUMO

Agricultural practices in grapevines management include water restrictions due to its positive effect on wine quality, especially when applied at fruit ripening. Although the effects of water stress in some groups of phytohormones have already been described in leaves and whole grapes, information regarding tissue-specific variations in hormones during ripening in grapes is scarce. Field-grown grapevines from the cv. "Merlot" were subjected to two differential water supplies, including only rainfed, non-irrigated vines (T0) and vines additionally irrigated with 25Lweek-1 vine-1 (T1). Tissue-specific variations in the hormonal profiling of grapes [including changes in the contents of abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid (ACC), the auxin indole-3-acetic acid, gibberellins 1, 3, 4, and 7 (GA1, GA3, GA4, and GA7), the cytokinins trans-zeatin, and 2-isopentenyl adenine, including as well their respective ribosylated forms] were periodically evaluated from veraison to harvest. The hormonal profiling in leaves was also measured at the beginning and end of the season for comparison. Results showed that grape growth dynamics were transiently affected by the differences in water regimes, the increased water supply leading to an accelerated growth, slightly reduced accumulation of sugars, and transiently lowered pH, although grape quality did not differ between treatments at harvest. Hormonal profiling of whole berries did not reveal any difference in the endogenous contents of phytohormones between treatments, except for a transient decrease in GA4 contents in T1 compared to T0 vines, which was not confirmed at the tissular level. Hormonal profiling at the tissue level highlighted a differential accumulation of phytohormones during ripening in berry tissues, with pulps being particularly poor in ABA, JA, and SA contents, seeds particularly accumulating ACC, gibberellins, and zeatin-type cytokinins, and the skin being particularly rich in auxin and active cytokinins. Changes in water supply led to very small and transient changes in the endogenous contents of phytohormones in the seeds, pulp, and skin of berries, the most remarkable variations being observed in cytokinin contents, which increased earlier [between 5 and 12days after veraison (DAV)] but later kept more constant in the skin from T1 compared to T0 vines and were also 3-fold higher at 40 DAV in seeds of T1 compared to T0 vines. It is concluded that small changes in water supply can trigger hormonal-driven physiological adjustments at the tissular level affecting the evolution of fruit growth and quality throughout grape berry ripening.

20.
J Sci Food Agric ; 101(9): 3981-3986, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33336798

RESUMO

BACKGROUND: Olive, as a non-climacteric fruit, is presumed to be ethylene independent with regard to ripening triggering/coordination. Nevertheless, studies have demonstrated that postharvest ethylene treatments induce changes in composition and properties also of non-climacteric fruits, including aroma profiles, a key quality parameter of extra virgin olive oils. Olive fruit of cv. 'Leccino' harvested at two distinct ripening stages (less advanced ripening, LAR; and more advanced ripening, MAR, with Jaén index of 4.58 and 5.10, respectively) were subjected to ethylene (1000 ppm in air) treatment for 24 h before oil extraction. RESULTS: Based on multivariate analysis of volatile organic compound (VOCs), the effect of ethylene treatment appeared to be more pronounced in MAR samples. However, differences in organoleptic analysis were also detected in ethylene-treated LAR olive oils. Ethylene seems to selectively affect linolenic/linoleic acid metabolism, particularly concerning the C5 pathway, and reduce specific defect-associated compounds. CONCLUSION: Exogenous ethylene applied to cv. 'Leccino' olives before processing was effective in inducing specific changes in the VOC profiles of the resulting oil. The effect was different depending on the ripening stage of the harvested olives. The lipoxygenase pathway (including the production of C5 compounds) and fermentative-related compounds appeared to be affected by the treatment. © 2020 Society of Chemical Industry.


Assuntos
Etilenos/farmacologia , Frutas/química , Frutas/crescimento & desenvolvimento , Olea/efeitos dos fármacos , Azeite de Oliva/química , Reguladores de Crescimento de Plantas/farmacologia , Compostos Orgânicos Voláteis/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Odorantes/análise , Olea/química , Olea/crescimento & desenvolvimento , Olea/metabolismo , Azeite de Oliva/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...